

Surface Mount N-Channel Mosfet

Features

- · Fast Switching
- Low Gate Charge & Ciss
- 100% Avalanche Tested
- Improved dv/dt Capability
- RoHS 2.0 Compliant

Applications

Power Switching Application

Absolute Maximum Ratings

(Tc = 25°C unless otherwise specified)

Parameter		Symbol	Ratings	Unit					
Drain Source Voltage		Vds	60	V					
Gate Source Voltage		Vgs	± 20	v					
Drain Current Continuous	@ Tc= 25°C @ Tc= 100°C	D	209 132	А					
Drain Current Pulsed Note3	@ V _{GS} = 10V	DM	836	А					
Single Pulse Avalanche Energy Note3.6		Eas	256	mJ					
Power Dissipation ^{Note2} @ Tc= 25°C		PD	125	w					
Storage Temperature Range		Тѕтс	-55 to +150	°C					
Operating Junction Temperature Range		TJ	-55to +150	°C					
Thermal Resistance Junction to	Rθյc	1.0	°C/W						

Notes:

1. The value of R_{BJC} is measured in a still air environment with TA =25°C and the maximum allowed junction temperature of 150°C. The value in any given application depends on the user's specific board design.

2. The power dissipation P_{D} is based on $T_{\text{J(MAX)}}{=}150^{\circ}\text{C}$, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.

3. Single pulse width limited by junction temperature $T_{J(\text{MAX})}\text{=}150^\circ\text{C}.$

- 4. The R_{BJA} is the sum of the thermal impedance from junction to case R_{BJC} and case to ambient.
- 5. The maximum current rating is package limited.
- 6. The EAS data shows Max. rating. The test condition is $V_{\text{DS}}\text{=}50\text{V}$,L=0.5mH

Recommended Land Pattern

			UNIT:mm
DIM.	MIN	NOM	MAX
А	0.90	1.00	1.10
b	0.25	0.35	0.50
С	0.10	0.20	0.30
D	4.80	5.00	5.30
D1	4.90	5.10	5.50
D2	3.92	4.02	4.20
Е	5.65	5.75	5.85
E1	5.90	6.05	6.20
E2	3.325	3.525	3.775
E3	0.80	0.90	1.00
е		1.27	
L	0.40	0.55	0.70
L1		0.65	
L2	0.00		0.15
К	1.00	1.30	1.50

www.dacosemi.com.tw

DAM209N006G1

Electrical Characteristics @ Tc =25°C (unless otherwise specified)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit			
OFF Characteristics									
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V, I _{DS} =0.25mA	60	-	-	V			
Zero Gate Voltage Drain Current	DSS	V _{GS} =0V, V _{DS} =60V	-	-	1	μA			
Gate To Source Forward Leakage	I _{GSS}	$V_{GS}=\pm 20V$, $V_{DS}=0V$	-	-	±100	nA			
ON Characteristics									
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}$, $I_{D} = 0.25 mA$	2.0	3.0	4.0	V			
Drain-Source On-State Resistance	R _{DS(on)}	V _{GS} =10V • I _D =50A	-	1.2	1.5	mΩ			
Gate Resistance	Rg	V _{DS} = V _{GS} =0V, f = 1.0MHz	-	0.8	-	Ω			
Forward Transconductance	g _{fs}	V _{DS} =5V • I _D =50A	-	92	-	S			
Dynamic Characteristics									
Input Capacitance	C _{iss}	V _{DS} =30V	-	5339	-				
Output Capacitance	C _{oss}	V _{GS} =0V	-	1274	-	pF			
Reverse Transfer Capacitance	Crss	Freq.=1.0MHz	-	128	-				
Switching Characteristics									
Turn-On Delay Time	t _{d(on)}	V_{DD} =11.7V V_{GS} =10V I_{D} =50A R_{G} =2.5 Ω	-	25	-	ns			
Rise Time	tr		-	20	-				
Turn-Off Delay Time	t _{d(off)}		-	38	-				
Fall Time	t _f		-	11	-				
Total Gate Charge	Qg	V _{DS} =30V	-	77	-				
Gate to Source Charge	Qgs	V _{GS} =10V	-	27	-	nC			
Gate to Drain Charge	Q _{gd}	I _{DS} =50A	-	10	-				
Source-Drain Diode Characteristics									
Diode Forward Voltage	V _{SD}	V _{GS} =0V • I _S =50A	-	0.83	1.2	V			
Body Continuous Source Current	Is		-	_	209	А			
Body Pulsed Current	I _{SM}		-	-	836	А			
Reverse Recovery Time	Trr	Is=8A → T」=25°C	-	88	-	ns			
Reverse Recovery Charge	Qrr	di/dt=100A/µs	-	258	-	nC			

DAM209N006G1

Typical Performance Characteristics

Figure 1. Output Characteristics

Figure 2. Transfer Characteristics

Figure 6. Capacitance Characteristics

DAM209N006G1

Typical Performance Characteristics

Figure 9. Normalized Threshold Voltage vs Junction Temperature

Figure 11. Max. Safe Operating Area

Figure 10.Drain-to-Source On Resistance vs Gate Voltage and Drain Current

Figure 12. Max. Effective Transient Thermal Impedance, Junction-to-Case

Disclaimer

DACO Semiconductor reserves the right to make modifications, enhancements, improvements, corrections, or other changes to this document and any product described herein without prior notice.

DACO Semiconductor makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does DACO Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any liability, including without limitation special, consequential or incidental damages.

Purchasers are responsible for its products and applications using DACO Semiconductor products, including compliance with all laws, regulations, and safety requirements or standards, regardless of any support or application information provided by DACO Semiconductor. "Typical" parameters that may be provided in DACO Semiconductor datasheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by the customer's technical experts.

DACO Semiconductor products are not designed, authorized, or warranted to be suitable for use in life support, life-critical or safety-critical systems, or equipment, nor in applications where failure or malfunction of DACO Semiconductor's product can reasonably be expected to result in personal injury, death or severe property or environmental damage. DACO Semiconductor accepts no liability for the inclusion and/or use of DACO Semiconductor's products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Purchasers who buy or use DACO Semiconductor products for any unintended or unauthorized applications are required to indemnify and absolve DACO Semiconductor, its suppliers, and distributors from any claims, costs, damages, expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that DACO Semiconductor was negligent regarding the design or manufacture of the part.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or by any information storage and retrieval system, or otherwise, without the prior written permission of DACO Semiconductor Co., Ltd.