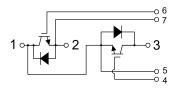


IGBT Power Module 650V/100A

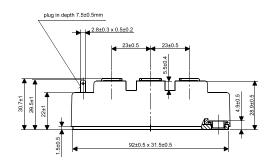
Features

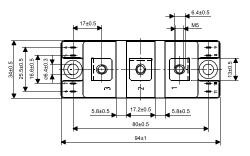
- ۵ 34mm Fast Switching Trench / Field Stop IGBT Technology
- Low Switching Losses \bullet
- Super Fast Diodes
- High Short Circuit Capability

Applications


- Welder / Power Supply
- UPS / Inverter
- Industrial Motor Drive

Maximum Ratings (Tc= 25°C)


	ltem		Symbol	Rated Value	Unit	
Collector-Emitter	Voltage	T _{VJ} = 25°C	VCES	650	V	
Gate-Emitter Peak	Voltage		Vges	±20	V	
Continuous DC Co	bllector Current	Tc = 100°C	IC,nom.	100	А	
Repetitive Peak C	ollector Current	tp =1ms	ICRM	200	A	
Total Power Dissip	pation		Ptot	333	W	
Isolation Voltage	RMS, f=50)Hz, t=1min	Viso	3000	V	
Continuous DC Fo	orward Current		lF	100	A	
Repetitive Peak Fo	orward Current	tp =1ms	IFRM	200	A	
Temperature unde	er switching condition	ons	TVJ op	-40~+150	°C	
Storage Temperature			Tstg	-40~+125	°C	
	Module Base to	Heatsink (M6)		3~5	N.m	
Mounting Torque	Busbar to Termir	nal (M5)		2.5~5	N.III	



Circuit Diagram Headline

Package Outlines

Dimensions in mm (1 mm = 0.0394")

Preliminary Data

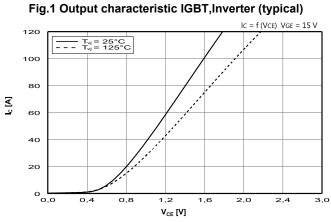
Electrical Characteristics

Characteristics	Symbol	Test Conditions		Min.	Тур.	Max.	Unit
	V		T _{vj} =25°C	-	1.6	1.8	v
Collector-emitter saturation voltage	V _{CE sat}	I _C =100A, V _{GE} =15V	T _{vj} =125°C	-	1.75	-	
Gate threshold voltage	V _{GEth}	I_{C} =1.5mA, V_{CE} = V_{GE}	T _{vj} =25°C	4.5	5.5	6.5	V
Gate charge	Q_{G}	V _{GE} = -15 V +15 V		-	0.6	-	μC
Internal Gate Resistance	R _{G(int)}	V _{GE} = -15 V +15 V		-	4.9	-	Ω
Input capacitance	C _{ies}	f = 100KHz, T _{vj} =25°C, V _{CE} =25V, V	/ _{GE} =0V	-	6.32	-	nF
Output capacitance	C _{oes}	f = 100KHz, T _{vj} =25°C, V _{CE} =25V, V _{GE} =0V		-	598	-	
Reverse transfer capacitance	C _{res}	f = 100KHz, T _{vj} =25°C, V _{CE} =25V, V _{GE} =0V		-	252	-	– pF
Collector-emitter cut-off current	I _{CES}	V _{CE} =650V, V _{GE} =0V, T _{vj} =25°C		-	-	1	mA
Gate-emitter leakage current	I _{GES}	V _{CE} =0V, V _{GE} =20V, T _{vj} =25°C		-	-	400	nA
Turn-on delay time, inductive load	t _{d on}	I_{C} =100A, V_{CE} =325V V_{GE} = ±15V R_{Gon} =6.2Ω	T _{vj} =25°C T _{vj} =125°C Tvj =150°C	-	0.176 0.175 0.177	-	μs
Rise time, inductive load	t _r	I_{C} =100A, V _{CE} =325V V _{GE} = ±15V R _{Gon} =6.2Ω	T _{vj} =25°C T _{vj} =125°C Tvj =150°C	-	0.059 0.058 0.061	-	μs
Turn-off delay time, inductive load	t _{d off}	I_{C} =100A, V_{CE} =325V V_{GE} = ±15V R_{Goff} =6.2Ω	T _{vj} =25°C T _{vj} =125°C Tvj =150°C	-	0.233 0.248 0.252	-	μs
Fall time, inductive load	t _f	$I_{C} = 100A, V_{CE} = 325V$ $V_{GE} = \pm 15V$ $R_{Goff} = 6.2\Omega$	T _{vj} =25°C T _{vj} =125°C Tvj =150°C	-	0.106 0.133 0.134	-	μs
Turn-on energy loss per pulse	E _{on}	I_{C} =100A, V _{CE} =325V V _{GE} = ±15V R _{Gon} =6.2Ω	T _{vj} =25°C T _{vj} =125°C Tvj =150°C	-	1.47 2.45 2.87	-	mJ
Turn-off energy loss per pulse	E _{off}	I_{C} =100A, V _{CE} =325V, L _S =85nH V _{GE} = ±15V R _{Goff} =6.2Ω	T _{vj} =25°C T _{vj} =125°C Tvj =150°C	-	3.49 3.73 4.12	-	mJ
SC data	I _{SC}	$\label{eq:VGE} \begin{array}{l} V_{GE} \leq \! 15V, V_{CC} = \! 325V \\ V_{CEmax} = \! V_{CES} \text{ - } L_{sCE} \cdot \! di \! / \! dt \end{array}$	t _P ≤10µs, T _{vj} =125°C	-	400	-	А
Thermal resistance, junction to case	R _{thJC}	per IGBT		-	-	0.45	°C/W
Thermal resistance, case to heatsink	R _{thCH}	per IGBT		-	0.50	-	°C/W

Preliminary Data

Diode Ratings & Characteristics

Characteristics	Symbol	Test Conditions			Value		Unit
Repetitive peak reverse voltage	V _{RRM}	T _{vj} =25°C			650		V
Continuous DC forward current	I _F				100		A
Repetitive peak forward current	I _{FRM}	t _P =1ms			200		А
l²t - value	l²t	V _R =0V, t _P =10ms, T _{vj} =125°C			930		A²s
Characteristics	Symbol	Test Conditions		Min.	Тур.	Max.	Unit
Forward voltage	V _F	I _F =100A, V _{GE} =0V	T _{vj} =25°C T _{vj} =125°C		1.6 1.5	1.75	v
Peak reverse recovery current	I _{RM}	$\begin{split} I_{F} = &100A, \ \text{-di}_{F}/\text{dt} = &2000A/\mu s \ (T_{vj} = &125^{\circ}\text{C}) \\ V_{R} = &325V \\ V_{GE} = &-&15V \end{split}$	T _{vj} =25°C T _{vj} =125°C Tvj =150°C		82 150 150		А
Recovered charge	Qr	$\begin{split} I_{F} = &100A, \ \text{-di}_{F}/\text{dt} = &2000A/\mu s \ (T_{vj} = &125^{\circ}\text{C}) \\ V_{R} = &325V \\ V_{GE} = &-&15V \end{split}$	T _{vj} =25°C T _{vj} =125°C Tvj =150°C		2.41 7.10 8.51		μC
Reverse recovery energy	Erec	$\begin{split} I_{\rm F} = &100 {\rm A}, \ {\rm di_{\rm F}}/{\rm dt} = &2000 {\rm A}/\mu {\rm s} \ ({\rm T_{vj}} = &125^{\circ}{\rm C}) \\ V_{\rm R} = &325 {\rm V} \\ V_{\rm GE} = &-&15 {\rm V} \end{split}$	T _{vj} =25°C T _{vj} =125°C Tvj =150°C		0.84 2.55 2.62		mJ
Thermal resistance, junction to case	R _{thJC}	per diode				0.65	°C/W
Thermal resistance, case to heatsink	R _{thCH}	per diode			0.60		°C/W
Temperature under switching conditions	T _{vj op}			-40		125	°C


Module Ratings & Characteristics

Characteristics	Symbol	Test Conditions	Value	Unit
Material of module baseplate			Cu	
Internal isolation		basic insulation (class 1, IEC 61140)	Al ₂ O ₃	
Creepage distance		terminal to heatsink terminal to terminal	17 20	mm
Clearance		terminal to heatsink terminal to terminal	17 9.5	mm
Comperative tracking index	CTI		>200	

Typical Characteristics

Preliminary Data

r (typical) Fig.2 Transfer characteristic IGBT,Inverter (typical)

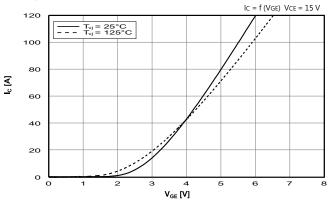


Fig.3 Switching losses IGBT,Inverter (typical)

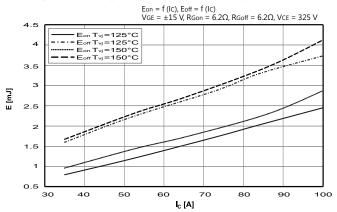


Fig.5 Transient thermal impedance IGBT, Inverter

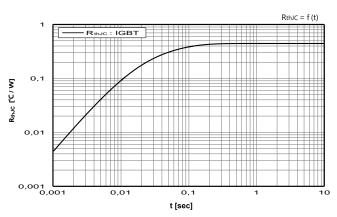
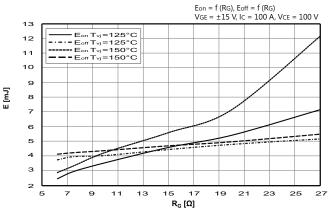
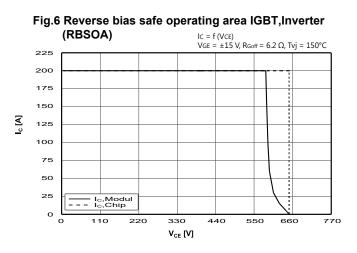




Fig.4 Switching losses IGBT, Inverter (typical)

www.dacosemi.com.tw

Typical Characteristics

Preliminary Data

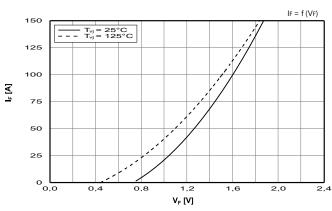
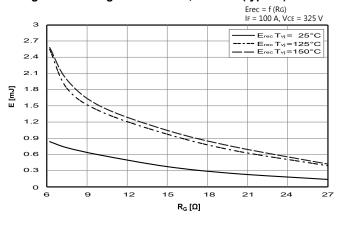


Fig.7 Forward characteristic of Diode, Inverter (typical)



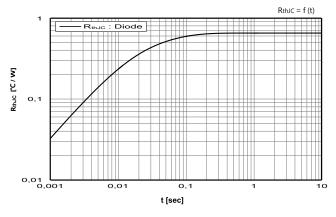


Fig.8 Switching losses Diode, Inverter (typical) Erec = f (IF) RGon = 6.2Ω , VCE = 325 Vзо $E_{rec} T_{vj} = 25^{\circ}C$ $E_{rec} T_{vj} = 125^{\circ}C$ $E_{rec} T_{vj} = 150^{\circ}C$ 28 26 24 E [mJ] 22 20 18 16 14 30 60 70 80 90 100 20 40 50 I_₽ [A]

Disclaimer

DACO Semiconductor reserves the right to make modifications, enhancements, improvements, corrections, or other changes to this document and any product described herein without prior notice.For the most up-to-date version, please visit our website.

DACO Semiconductor makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does DACO Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any liability, including without limitation special, consequential or incidental damages.

Purchasers are responsible for its products and applications using DACO Semiconductor products, including compliance with all laws, regulations, and safety requirements or standards, regardless of any support or application information provided by DACO Semiconductor. "Typical" parameters that may be provided in DACO Semiconductor datasheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by the customer's technical experts.

DACO Semiconductor products are not designed, authorized, or warranted to be suitable for use in life support, life-critical or safety-critical systems, or equipment, nor in applications where failure or malfunction of DACO Semiconductor's product can reasonably be expected to result in personal injury, death or severe property or environmental damage. DACO Semiconductor accepts no liability for the inclusion and/or use of DACO Semiconductor's products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Purchasers who buy or use DACO Semiconductor products for any unintended or unauthorized applications are required to indemnify and absolve DACO Semiconductor, its suppliers, and distributors from any claims, costs, damages, expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that DACO Semiconductor was negligent regarding the design or manufacture of the part.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or by any information storage and retrieval system, or otherwise, without the prior written permission of DACO Semiconductor Co., Ltd.