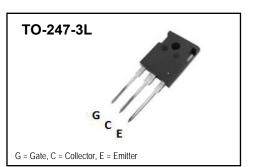
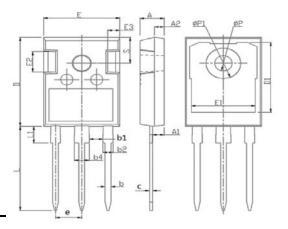


Power Pack Silicon Trench Field FS IGBT IGBT 650V / 75A

Features


- Fast Switching Field Stop IGBT Trench Technology
- Low Saturation Voltage: V_{CE(sat)} = 2.0V @ Ic = 75A
- Low Switching Loss
- Superfast Diodes
- ♦ High Efficient Turn-on di/dt Controllability


Applications

- Photovoltaic converters
- UPS & Solar Inverters
- Boost

Maximum Ratings (Tc = 25°C)

Item			Rated Value	Unit
Collector-Emitter Voltage			ces 650	
Gate-Emitter Voltage		V_{GES}	±25	V
Collector Current	rrent Tc = 100°C		75	A
Pulsed Collector Current		ICRM	300	A
Total Power Dissipation TJ = 25°C		PD	468	W
Diode Continuous Forward Current	Tc=25°C Tc=100°C	IF	150 75	А
Diode Forward Current		I _{FM}	160	A
Junction Temperature Range		TJ	- 55~ + 175	°C
Storage Temperature Range		Tstg	- 55 ~ + 175	°C

Cumphed	Dimensions(millimeters)					
Symbol	Min.	Max.				
А	4.80	5.20				
A1	2.21	2.61				
A2	1.85	2.15				
b	1.10	1.30				
b1	2.55	2.85				
b2	1.90	2.15				
b4	3.00	3.20				
С	0.50	0.75				
D	20.70	21.30				
D1	16.25	16.85				
е	5.25	5.65				
E	15.60	16.00				
E1	13.06	13.46				
E2	4.80	5.20				
E3	1.80	2.50				
L	19.62	20.22				
L1	4.00	4.30				
ΦP	3.40	3.80				
Φ Ρ1	7.00	7.30				
S	5.95	6.35				

Parameter	Test Conditions		Symbol	Min	Тур	Max	Unit
Static Characteristics							
Collector-Emitter Voltage	V _{GE} =0V, I _{CE} =250µA		V _{CES}	650	_		V
Collector-Emitter Saturation Voltage		25°C 175°C	$V_{CE(sat)}$	_	2.00 2.80	2.40	V V
Gated Threshold Voltage	V _{CE} = V _{GE} , I _C =1mA		V _{GE(th)}	4.5	5.5	6.5	V
Collector-Emitter Leakage Current	V _{GE} =0V, V _{CE} =650V		I _{CES}			55	uA
Gate to Emitter Forward Leakage	V_{GE} = +20V, V_{CE} = 0V		I _{GES(F)}			200	nA
Gate to Emitter Reverse Leakage	V_{GE} = -20V, V_{CE} = 0V		I _{GES(R)}			-200	nA
Dynamic Characteristics							
Input Capacitance	V _{GE} =0V,		C _{ies}		3979		рF
Output Capacitance	V _{CE} =25V,		C _{oes}	_	187		рF
Reverse Transfer Capacitance	f=1.0MHZ		C _{res}	_	36		рF
Gate Charge	V _{CE} =520V, I _C =75A, V _{GE} =15V		Qg	_	156		nC
Switching Characteristics							
Turn-on Delay Time			t _{d(on)}		29	_	
Rise Time	V _{CE} =400V,		t _r		66		nS
Turn-off Delay Time	I _C =75A, V _{GE} =15V, R _G =5Ω,		t _{d(off)}	_	110		
Fall Time		Γ	t _f		58		
Turn-On Switching Loss	T _J = 25 °C Inductive Load		Eon		1.25		mJ
Turn-Off Switching Loss			E _{off}		1.10		
Total Switching Loss			Ets	_	2.35		

■ Electrical Characteristics @ Tc=25°C (unless otherwise specified)

■ Electrical Characteristics of the Diode @Tc= 25°C (unless otherwise specified)

Parameter	Test Conditions		Symbol	Min	Тур	Max	Unit
Diode Continuous Forward Current	T _C = 100°C	T _C = 100°C		75	—	_	А
Diode Forward Voltage	I _F = 75A	T _c = 25°C T _c = 125°C T _c = 175°C	V _F		1.60 1.35 1.15	2.40 	V
Reverse Recovery Time	TJ=25°C,	TJ=25°C , I⊧=75A di/dt=200A/us			36	_	nS
Reverse Recovery Charge	di/dt=200				96		nC

*Pulse Test: Pulse Width <= 300µs, Duty Cycle< =2%

Thermal Characteristics

Paramter	Symbol	Min	Тур	MAX	Units
Themal Resistance, Junction to case for IGBT	$R_{\theta JC}$		_	0.32	°C/W
Themal Resistance, Junction to case for Diode	R _{θJC}	_	_	0.70	°C/W
Themal Resistance, Junction to Ambient	R _{θJA}	_		40	°C/W

Characteristics Curves

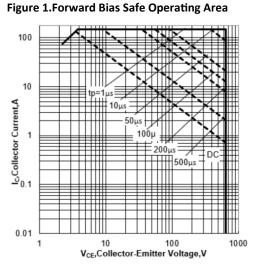


Figure 3. Collector Current vs Case Temperature

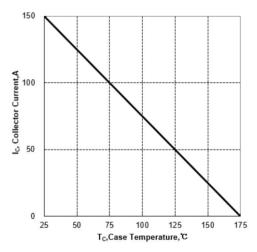
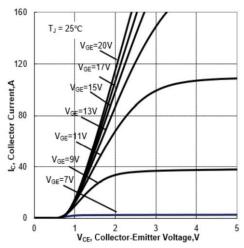
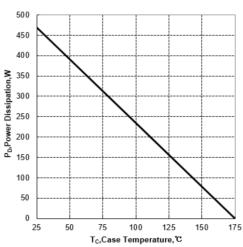
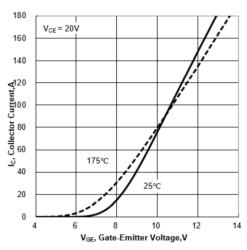
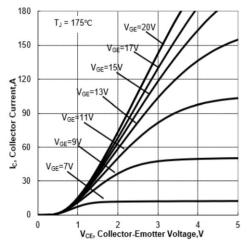
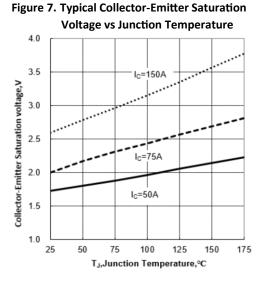
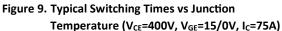




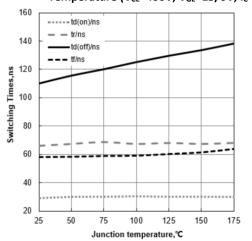
Figure 5. Typical Output Characteristics (T_J=25℃)

Figure 4. Typical Transfer Characteristics


Figure 6. Typical Output Characteristics (T_J=175°C)




Figure 2. Power Dissipation vs Case Temperature

Characteristics Curves

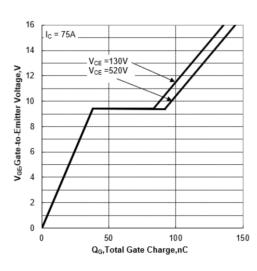
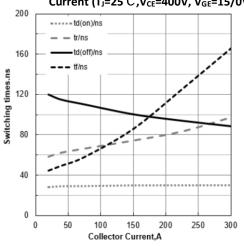
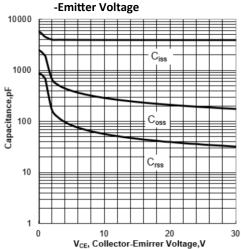
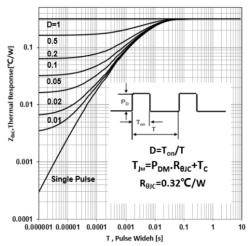


Figure 8. Typical Switching Times vs Gate Resistor

Figure 10. Typical Switching Times vs Collector Current (TJ=25°C,V_{CE}=400V, V_{GE}=15/0V)


Figure 12. Typical Capacitance vs Collector

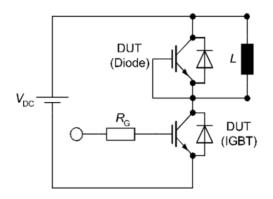

Characteristics Curves

Figure 13. IGBT Transient Thermal Impedance vs Pulse Width

Test Circuit and Waveform

Figure 14. Inductive Switching Test Circuit

Figure 16. Definition of switching losses

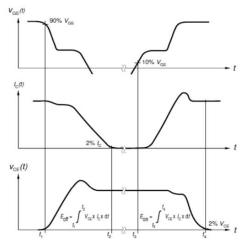


Figure 15. Definition of switching times

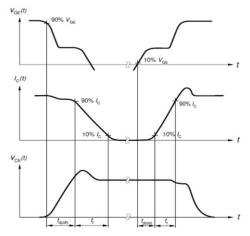
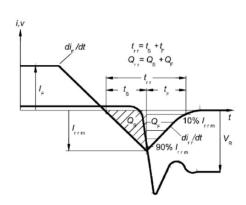



Figure 17. Definition of diode switching characteristics

Disclaimer

DACO Semiconductor reserves the right to make modifications, enhancements, improvements, corrections, or other changes to this document and any product described herein without prior notice.

DACO Semiconductor makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does DACO Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any liability, including without limitation special, consequential or incidental damages.

Purchasers are responsible for its products and applications using DACO Semiconductor products, including compliance with all laws, regulations, and safety requirements or standards, regardless of any support or application information provided by DACO Semiconductor. "Typical" parameters that may be provided in DACO Semiconductor datasheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by the customer's technical experts.

DACO Semiconductor products are not designed, authorized, or warranted to be suitable for use in life support, life-critical or safety-critical systems, or equipment, nor in applications where failure or malfunction of DACO Semiconductor's product can reasonably be expected to result in personal injury, death or severe property or environmental damage. DACO Semiconductor accepts no liability for the inclusion and/or use of DACO Semiconductor's products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Purchasers who buy or use DACO Semiconductor products for any unintended or unauthorized applications are required to indemnify and absolve DACO Semiconductor, its suppliers, and distributors from any claims, costs, damages, expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that DACO Semiconductor was negligent regarding the design or manufacture of the part.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or by any information storage and retrieval system, or otherwise, without the prior written permission of DACO Semiconductor Co., Ltd.